SCOPE

Our Laboratory is active in the (I) preparation/processing and (II) investigation of physical properties, of polycrystalline and monocrystalline materials: superconductors, ferro-magnetic/electric, biological, in the form of three (compact bulk), two (film), one (wire-shaped oxides) and zero (nanoscopic particles) dimensions. In addition, attention has been given on combinatorial/hybrid metamaterials due to their multifunctional character and the accompanying possible applications.

(I) EXPERIMENTAL SETUPS FOR THE PREPARATION/PROCESSING OF SAMPLES Setup for sintering under controlled environment (vacuum or desired gas): One-open-end quartz tubes adjustable to a two-stage pump unit (rotary and diffusion pumps Edwards, SpeedvacED50 and Diffstak 63/150c, respectively) with base pressure $\sim 5x10^{-6}$ Torr at T=25°C and $\sim 5x10^{-5}$ Torr at T=1000°C. Twoopen-ends quartz tubes with appropriate fittings for the controlled application of the desired gas (reductive 4%H₂+Ar, inert Ar etc). The units are used in combination with a shared furnace (Carbolyte, TZF12/65/550, T≤1200 °C).

Setups/instruments used in solid/wet chemistry: Autoclave unit for wet chemistry reactions up to 200°C. Precision scale (DS-26), Agate mortar/pestle, hydraulic press (Express, TY10003), centrifuges (Phoenix, CD2012 Plus), vortex (Scilogex, MX-S), precision pipettes (Scilogex, 0-10,100,1000µL), home-made spin coaters etc.

Setup of dc magnetron sputtering: setup of single gun, comprising of a two-stage pump unit (rotary, ELNOR, and diffusion, Leybold-DO121L), liquid nitrogen cryotrap, dc current source (Advanced Energy MDX-1.5K) and manual control of the employed gas pressure. Achieved base pressure $\sim 5 \times 10^{-7}$ Torr.

Setup for thermal evaporation of low-melting point metals: setup of single source, comprising of a two-stage pump unit (rotary and diffusion, Leybold D2,5E and Edwards EO50/60, respectively) and a controlled temperature furnace up to 700°C with accuracy $\pm 1^{\circ}$ C (WEST 3810). Achieved base pressure $\sim 5 \times 10^{-6}$ Torr.

(II) EXPERIMENTAL SETUPS FOR THE INVESTIGATION OF PHYSICAL PROPERTIES

Setup for ac magnetic susceptibility: Independent, automated setup for recording the alternating magnetic moment of a sample, finally given in the form of a dc voltage (scanner Keithley DM2000: $0.1\mu V \le V_{dc} \le 1000V$). The setup is based on four secondary coils in second order configuration and a Lock-In amplifier (Stanford Research Systems, SR530), with sensitivity up to 10^9 , in external triggering operation. Measurements are

performed in the range 78K≤T≤300K. The excitation ac magnetic field has rms value $0.001G \le B_{ac}^{rms} \le 2G$ and frequency 0.1Hz<*f*_{ac}≤13MHz (function generator HP3312A). dc magnetic А field -500G≤B_{dc}≤500G (current source Schroff SEC3022A) can be applied, optionally. The sensitivity of the setup, depending on the magnetic susceptibility of the material, is better than $1\mu V/mgGauss$ (signal/noise> 10^4 for polycrystalline samples of mass 100-300 mg, while signal/noise $\approx 10^2$ for single crystals of mass 0.1-10mg).

Setups for electrical resistivity: Two independent, automated setups for recording the electrical response of samples, finally given in the form of a dc voltage (voltmeter, scanner Keithley DM2000: $0.1\mu V \le V_{dc} \le 1000V$), under application of a (a) dc and (b) ac current. The two setups act in a complemental fashion in the investigation of materials that reside in the entire range from superconductors to insulators. (a) The setup of dc electrical resistivity comprises of a dc current source (Keithley 224: $5nA \le I_{dc} \le 100$ mA) and the above-mentioned voltmeter. (b) The setup of ac electrical resistivity comprises of an ac voltage source (Black Star, Jupiter 500:

 $0 < V_{ac}^{pp} \le 30$ V, 0.1Hz $< V_{ac}^{pp} \le 500$ kHz), an ac voltage-to-ac current converter, a Lock-In amplifier (Stanford Research Systems, SR530), with sensitivity up to 10^9 , in external triggering operation and the above-mentioned voltmeter. Measurements are performed in the range 78K \le T \le 300K. A dc magnetic field -1000G \le B_{dc} \le 1000G (current source HP 6260B) can be applied, optionally. The sensitivity of the setup is better than 10^{-8} Ωcm for superconductors and better than 10^{10} Ωcm for insulators. Finally, for the investigation of piezoelectric materials and relevant combinatorial/hybrid metamaterials, following a special preparation of the sample, we can apply high dc electric fields in the range -30kV/cm \le E_{dc} \le 30kV/cm (Keithley Instruments, 246 High Voltage Supply) during the measurements in both techniques, dc and ac electrical resistivity.

Multifaceted setup for the investigation of combinatorial magnetic-(piezo)electric-optical properties: Independent, multifaceted setup for the automated recording of the interference between magnetic,

(piezo)electric and optical properties exhibited by combinatorial/hybrid metamaterials. The setup is based on a helium optical cryostat (Janis, CCS-150), a closed-cycle helium compressor (CTI-Cryogenics© 8200) and a turbo-based pumping station (Pfeiffer, HIPACE80).

Measurements are performed in the range 10K≤T≤325K with controlled temperature. The setup comprises of the following peripherals:

- Multimeter scanner of dc and ac, voltage and current (Keithley DM2000: $100nV \le V_{dc} \le 1000V$, $100nV \le V_{ac}^{rms} \le 750V$, $10nA \le I_{dc} \le 3A$, $1\mu A \le I_{ac}^{rms} \le 3A$).
- Lock-In amplifier (Stanford Research Systems, SR850), with sensitivity up to 10⁹, in operation of internal/external triggering.
- Amperemeter of dc current with measuring capability in the range $2nA \le I_{dc} \le 20mA$ with resolution 10 fA, having a built-in dc voltage source operating in the range $0 \le V_{dc} \le 500V$ with step 200 μ V (Keithley, 6487 picoameter/voltage source).

The setup is under construction. Soon, the following temperature controller and UV-vis spectrophotometer will be installed.

- Temperature controller with accuracy ±1 mK (Stanford Research Systems, CTC100).
- Spectrophotometer UV-VIS 190nm-1100nm, (RayLeigh UV1601).

Setups of optical microscopy: Optical microscopes (5 independent units) and a stereoscope, operating in transmission and reflection modes. Each unit is connected through a digital camera to a distinct PC for imaging the samples (photo snapshots and video). Bio-molecular/chemical stains and fluorescence tracers (regime 450nm-680nm) and polarized light are used, depending on the issue under examination.

<u>Note</u>: For the operation of the cryogenic setups, proper infrastructure and accessories exist for the long-term storage (Messer Griesheim Apollo, tank 100 lt) and every-day use (Cole-Parmer, dewars 2-5 lt) of liquid nitrogen.

